top of page

Mindfulness Wellness Group

Public·10 members

Brain Connection - Truncate.rar !EXCLUSIVE!

A connection between NF1-RAS-MEK signaling and retinoic acid action was demonstrated by the finding that the NF1-RAS-MEK cascade suppresses ZNF423 protein expression, which functions as a RAR/RXR coactivator. Additionally, tumors with activated RAS signaling and low ZNF423 expression present with a poor response to 13-cis-RA (isotretinoin) treatment. Moreover, decreased NF1 and ZNF423 gene expression, reflecting hyperactivated RAS/MAPK signaling, is correlated with a very poor clinical outcome in NBL patients and was detected in 78% of patients with relapsed NBL [92], whereas high expression levels both of these proteins are associated with the best prognosis in NBL patients. As a result, Holzel and colleagues suggest that pharmacological MEK inhibition can sensitize NBL cells that are resistant to retinoid-induced terminal differentiation. Although these data seem to be readily translatable, several important questions will need to be addressed before incorporating this therapy into clinical practice. It will be critically important to determine how MEK inhibition combined with isotretinoin will fit into the overall NBL treatment strategy and whether MAPK pathway activation is a mechanism of acquired resistance to isotretinoin therapy or a collateral event of oncogenic driver mutations only [93]. Another recent study also indicated a potential role of MEK cascade inhibition in overcoming ATRA resistance in malignant peripheral nerve sheath tumors (MPNST) in vitro, but no correlation was found between ZNF423 mRNA levels and the sensitivity of MPNST cells to ATRA [94]. These results demonstrate that some other mechanisms are involved in maintaining ATRA resistance of MPNSTS cells.

Brain Connection - Truncate.rar

The retinoid acid receptors (RAR) and peroxisome proliferator-activated receptors (PPAR) have been implicated in the regulation of inflammatory reactions. Both receptor families contain ligand-activated transcription factors which form heterodimers with retinoid X receptors (RXR). We review data that imply RAR/RXR and PPAR/RXR pathways in physiological reactions after spinal cord injury. Experiments show how RAR signaling may improve axonal regeneration and modulate reactions of glia cells. While anti-inflammatory properties of PPAR are well documented in the periphery, their possible roles in the central nervous system have only recently become evident. Due to its anti-inflammatory function this transcription factor family promises to be a useful target after spinal cord or brain lesions. PMID:18060014

Recessive mutations in the mitochondrial arginyl-transfer RNA synthetase (RARS2) gene have been associated with early onset encephalopathy with signs of oxidative phosphorylation defects classified as pontocerebellar hypoplasia 6. We describe clinical, neuroimaging and molecular features on five patients from three unrelated families who displayed mutations in RARS2. All patients rapidly developed a neonatal or early-infantile epileptic encephalopathy with intractable seizures. The long-term follow-up revealed a virtual absence of psychomotor development, progressive microcephaly, and feeding difficulties. Mitochondrial respiratory chain enzymes in muscle and fibroblasts were normal in two. Blood and CSF lactate was abnormally elevated in all five patients at early stages while appearing only occasionally abnormal with the progression of the disease. Cerebellar vermis hypoplasia with normal aspect of the cerebral and cerebellar hemispheres appeared within the first months of life at brain MRI. In three patients follow-up neuroimaging revealed a progressive pontocerebellar and cerebral cortical atrophy. Molecular investigations of RARS2 disclosed the c.25A>G/p.I9V and the c.1586+3A>T in family A, the c.734G>A/p.R245Q and the c.1406G>A/p.R469H in family B, and the c.721T>A/p.W241R and c.35A>G/p.Q12R in family C. Functional complementation studies in Saccharomyces cerevisiae showed that mutation MSR1-R531H (equivalent to human p.R469H) abolished respiration whereas the MSR1-R306Q strain (corresponding to p.R245Q) displayed a reduced growth on non-fermentable YPG medium. Although mutations functionally disrupted yeast we found a relatively well preserved arginine aminoacylation of mitochondrial tRNA. Clinical and neuroimaging findings are important clues to raise suspicion and to reach diagnostic accuracy for RARS2 mutations considering that biochemical abnormalities may be absent in muscle biopsy.

Autosomal recessive mutations in the RARS2 gene encoding the mitochondrial arginyl-transfer RNA synthetase cause infantile-onset myoencephalopathy pontocerebellar hypoplasia type 6 (PCH6). We describe 2 sisters with novel compound heterozygous RARS2 mutations who presented perinatally with neurologic features typical of PCH6 but with additional features including cardiomyopathy, hydrops, and pulmonary hypoplasia and who died at 1 day and 14 days of age. Magnetic resonance imaging findings included marked cerebellar hypoplasia, gyral immaturity, punctate lesions in cerebral white matter, and unfused deep cerebral grey matter. Enzyme histochemistry of postmortem tissues revealed a near-global cytochrome c oxidase-deficiency; assessment of respiratory chain enzyme activities confirmed severe deficiencies involving complexes I, III, and IV. Molecular genetic studies revealed 2 RARS2 gene mutations: a c.1A>G, p.? variant predicted to abolish the initiator methionine, and a deep intronic c.613-3927C>T variant causing skipping of exons 6-8 in the mature RARS2 transcript. Neuropathologic investigation included low brain weights, small brainstem and cerebellum, deep cerebral white matter pathology, pontine nucleus neuron loss (in 1 sibling), and peripheral nerve pathology. Mitochondrial respiratory chain immunohistochemistry in brain tissues confirmed an absence of complexes I and IV immunoreactivity with sparing of mitochondrial numbers. These cases expand the clinical spectrum of RARS2 mutations, including antenatal features and widespread mitochondrial respiratory chain deficiencies in postmortem brain tissues.

During development transcription factor combinatorial codes define a large variety of morphologically and physiologically distinct neurons. Such a combinatorial code has been proposed for the differentiation of projection neurons of the somatic and visceral components of cranial nerves. It is possible that individual neuronal cell types are not specified by unique transcription factors, but rather emerge through the intersection of their expression domains. Brn3a, Brn3b and Brn3c, in combination with each other and/or transcription factors of other families, can define subgroups of Retinal Ganglion Cells (RGC), Spiral and Vestibular Ganglia, inner ear and vestibular hair cell neurons in the vestibuloacoustic system, and groups of somatosensory neurons in the Dorsal Root Ganglia (DRG). In the present study we investigated the expression and potential role of the Brn3b transcription factor in cranial nerves and associated nuclei of the brainstem. We report the dynamic expression of Brn3b in the somatosensory component of cranial nerves II, V, VII and VIII and visceromotor nuclei of nerves VII, IX, X, as well as other brainstem nuclei during different stages of development into adult stage. We find that genetically identified Brn3bKO RGC axons show correct but delayed pathfinding during the early stages of embryonic development. However loss of Brn3b does not affect the anatomy of the other cranial nerves normally expressing this transcription factor. PMID:26356988

Retinoic acid receptor beta (RAR beta) is a retinoic acid receptor gene that has been shown to play key roles during multiple cancer processes, including cell proliferation, apoptosis, migration and invasion. Numerous studies have found that methylation of the RAR beta promoter contributed to the occurrence and development of malignant tumors. However, the connection between RAR beta promoter methylation and prostate cancer (PCa) remains unknown. This meta-analysis evaluated the clinical significance of RAR beta promoter methylation in PCa. We searched all published records relevant to RAR beta and PCa in a series of databases, including PubMed, Embase, Cochrane Library, ISI Web of Science and CNKI. The rates of RAR beta promoter methylation in the PCa and control groups (including benign prostatic hyperplasia and normal prostate tissues) were summarized. In addition, we evaluated the source region of available samples and the methods used to detect methylation. To compare the incidence and variation in RAR beta promoter methylation in PCa and non-PCa tissues, the odds ratio (OR) and 95% confidence interval (CI) were calculated accordingly. All the data were analyzed with the statistical software STATA 12.0. Based on the inclusion and exclusion criteria, 15 articles assessing 1,339 samples were further analyzed. These data showed that the RAR beta promoter methylation rates in PCa tissues were significantly higher than the rates in the non-PCa group (OR=21.65, 95% CI: 9.27-50.57). Subgroup analysis according to the source region of samples showed that heterogeneity in Asia was small (I2=0.0%, P=0.430). Additional subgroup analysis based on the method used to detect RAR beta promoter methylation showed that the heterogeneity detected by MSP (methylation-specific PCR) was relatively small (I2=11.3%, P=0.343). Although studies reported different rates for RAR beta promoter methylation in PCa tissues, the total analysis demonstrated that RAR beta promoter methylation

Both vitamin A deficiency and high doses of retinoids can result in learning and memory impairments, depression as well as decreases in cell proliferation, neurogenesis and cell survival. Physical activity enhances hippocampal neurogenesis and can also exert an antidepressant effect. Here we elucidate a putative link between running, retinoid signaling, and neurogenesis in hippocampus. Adult transgenic reporter mice designed to detect ligand-activated retinoic acid receptors (RAR) or retinoid X receptors (RXR) were used to localize the distribution of activated RAR or RXR at the single-cell level in the brain. Two months of voluntary wheel-running induced an increase in hippocampal neurogenesis as indicated by an almost two-fold increase in doublecortin-immunoreactive cells. Running activity was correlated with neurogenesis. Under basal conditions a distinct pattern of RAR-activated cells was detected in the granule cell layer of the dentate gyrus (DG), thalamus, and cerebral cortex layers 3-4 and to a lesser extent in hippocampal pyramidal cell layers CA1-CA3. Running did not change the number of RAR-activated cells in the DG. There was no correlation between running and RAR activation or between RAR activation and neurogenesis in the DG of hippocampus. Only a few scattered activated retinoid X receptors were found in the DG under basal conditions and after wheel-running, but RXR was detected in other areas such as in the hilus region of hippocampus and in layer VI of cortex cerebri. RAR agonists affect mood in humans and reduce neurogenesis, learning and memory in animal models. In our study, long-term running increased neurogenesis but did not alter RAR ligand activation in the DG in individually housed mice. Thus, our data suggest that the effects of exercise on neurogenesis and other plasticity changes in the hippocampal formation are mediated by mechanisms that do not involve retinoid receptor activation. (c) 2008 Wiley-Liss, Inc. 041b061a72

  • About

    Welcome to the group! You can connect with other members, ge...

    bottom of page